
www.manaraa.com

A Direct Algorithm for Type Inference in the

Rank 2 Fragment of the Second-Order �-Calculus�

A. J. Kfoury

kfoury@cs.bu.edu

Dept. of Computer Science

Boston University

J. B. Wells

jbw@cs.bu.edu

Dept. of Computer Science

Boston University

December 1, 1993

Boston University Computer Science Department

Technical Report 93-017

Abstract

We study the problem of type inference for a family of polymorphic type disciplines con-

taining the power of Core-ML. This family comprises all levels of the strati�cation of the

second-order lambda-calculus by \rank" of types. We show that typability is an undecidable

problem at every rank k � 3 of this strati�cation. While it was already known that typability

is decidable at rank � 2, no direct and easy-to-implement algorithm was available. To design

such an algorithm, we develop a new notion of reduction and show how to use it to reduce the

problem of typability at rank 2 to the problem of acyclic semi-uni�cation. A by-product of our

analysis is the publication of a simple solution procedure for acyclic semi-uni�cation.

�This work is partly supported by NSF grant CCR{9113196.

www.manaraa.com

1 Introduction

Background and Motivation. Modern type systems for functional programming languages
use polymorphic type inference. Type inference for untyped or partially typed programs saves
the programmer the work of specifying the type of every identi�er. Polymorphism lets the pro-
grammer write polymorphic functions that work uniformly on arguments of di�erent types and
avoids the maintenance problem that results from duplicating similar code at di�erent types.
The �rst programming language to use polymorphic type inference was the functional language
ML [GMW79, Mil85]. Due to its usefulness, many of the aspects of ML have been subsequently
incorporated in other languages (e.g. Miranda [Tur85]). ML shares with Algol 68 properties of
compile-time type checking, strong typing and higher-order functions while also providing type
inference and polymorphism.

The usefulness of a particular polymorphic type system depends very much on how feasible the
tasks of type checking and type inference are. We de�ne these concepts in terms of the untyped
�-calculus, which we use as our pure functional programming language throughout this paper. By
type checking we mean the problem of deciding, given a �-term M and a type � , whether � is one
of the types that may be derived for M by the type system under consideration. By type inference
we mean the problem of �nding a type derivable for a �-term in the type system. The problem of
type inference involves several issues:

(1) Is typability decidable, i.e. is it decidable whether any type at all is derivable for a
�-term in the type system?

If typability is undecidable, then there is little more to say in relation to type inference. (Although
a programming language may work around this problem by asking the programmer to supply
part of the type information and by using heuristics, we will omit discussion of this possibility.)
Otherwise, if typability is decidable, then it is possible to construct a type for typable �-terms, i.e.
type inference can be performed, in which case we further ask:

(2) How e�ciently can typability be decided? How e�ciently can type inference be
performed?

(3) Can a principal type (a \most general" type) be constructed for typable �-terms?

The answers to these questions determine how feasible the type system is to implement.

In addition to the feasibility of a particular polymorphic type system, its usefulness also depends
on how much exibility the type system gives the programmer. Although the polymorphism ofML
is useful, it is too weak to assign types to some program phrases that are natural for programmers
to write. To overcome these limitations researchers have investigated the feasibility of type systems
whose typing power is a superset of that of ML. Over the years, this line of research has dealt
with various polymorphic type systems for functional languages and �-calculi, in particular the
powerful type system of the Girard/Reynolds second-order �-calculus [Gir72, Rey74], which we
will call by its other name, System F. In the long quest to settle the type checking and typability
problems for F, researchers have also considered the problem for F modi�ed by various restrictions.
Multiple strati�cations of F have been proposed, e.g. by depth of bound type variable from binding
quanti�er in [GRDR91] and by limiting the number of generations of instantiation of quanti�ers
themselves introduced by instantiation in [Lei91]. One natural restriction which we consider in
this paper results from stratifying F according to the \rank" of types allowed in the typing of
�-terms and restricting the rank to various �nite values (introduced in [Lei83] and further studied
in [McC84, KT92]). All of these systems improve on the expressive power of ML.

Unfortunately, it is often the case that the more exible and powerful a particular polymorphic
type system is, the more likely that it will be infeasible to implement. As discouraging examples,

1

www.manaraa.com

the problems of typability and type checking for many of the polymorphic type systems mentioned
above have recently been proven undecidable. Type checking and typability were shown to be
undecidable for System F (cf. recent results submitted for publication elsewhere in [Wel93]) and
for its very powerful extension, System F

!
[Urz93]. Other related systems that are not exactly

extensions of ML have also recently been proven to have undecidable typability, i.e. System F�
which relates to object-oriented languages [Pie92], and the ��-calculus which relates to extensions
of �-Prolog [Dow93].

Against this recent background, it is desirable to demarcate precisely where the boundary
between decidable and undecidable typability lies within various strati�cations of System F. In the
case of decidable typability, it is also desirable to develop simple and easy-to-implement algorithms
for the most powerful level within a strati�cation that is also feasible to use. We undertake this
task for the strati�cation of System F by rank of types.

Contributions of This Paper. We can now �rmly establish the boundary for decidability of
typability and type checking within the strati�cation of System F by rank of types. The two
problems are undecidable for every fragment of F of rank � 3 and are decidable for rank � 2.
The undecidability of type checking at rank � 3 can be seen by observing that the proof for the
undecidability of type checking in F in [Wel93] requires only rank-3 types.1 The undecidability
of typability at rank � 3 results from the fact that the constants c and f de�ned in section 5
of [KT92] can be encoded using the methods of [Wel93] in System �3 (the rank-3 fragment of F)
and from Theorem 30 of [KT92]. We give this encoding in this paper. Since it was already known
from [KT92] that typability is decidable for System �2 (the rank-2 fragment of F), we know exactly
where the boundary of decidability for typability lies. These circumstances lead us to look for a
simple and direct algorithm for type inference within �2.

The existing proof that typability is decidable for System �2 uses a succession of several re-
ductions to the typability problem in ML and results in a type inference algorithm that is neither
simple nor easy to understand. In this paper, we give a simpler and more direct algorithm for
the decidable case of typability in �2. We �rst prove that �2 is equivalent to a restriction named
System ��;�2 having many convenient properties. We then develop a notion of reduction named
� which converts �-terms into a form which is more amenable to type inference but which also
preserves every �-term's set of derivable types in ��;�2 . The type inference problem in ��;�2 for a
�-term in �-normal form is easily converted into an acyclic semi-uni�cation problem. Finally, we
give a simple algorithm for solving acyclic semi-uni�cation problem. The complexity of the whole
procedure is the same as that of type inference in ML.

We omit all proofs of all lemmas and theorems in this conference report to remain within the page
limit. A later extended version of this paper will clarify the relationship between ML-typability
and typability in �2 and discuss the issues of type checking and principal types in �2.

Acknowledgements. A number of de�nitions used in this paper were lifted from [KT92, KTU90,
KTU93].

2 System �k and System �
�

2

In this section, we de�ne �rst the untyped �-calculus, then System F, then the restriction of System
F that results in System �k. Then, we de�ne a restriction of System �2 called System ��2 which
has equivalent typing power. We use the \Curry view" of type systems for the �-calculus, in which

1In second version of report to appear mid-December 1993.

2

www.manaraa.com

pure terms of the �-calculus are assigned types, rather than the \Church view" where terms and
types are de�ned simultaneously to produce typed terms.

The set of all �-terms � is built from the set of �-term variables V using application and
abstraction as speci�ed by the usual grammar � ::= V j (��) j (�V :�). We use small Roman
letters towards the end of the alphabet as metavariables ranging over V and capital Roman letters
as metavariables ranging over �. When writing �-terms, application associates to the left so that
MNP � (MN)P . The scope of \�x:" extends as far to the right as possible, while the scope of
\�x" without the \." covers as little as possible.

As usual, FV(M) and BV(M) denote the free and bound variables of a �-termM . ByM [x:=N]
we mean the result of substituting N for all free occurrences of x, renaming bound variables in
M to avoid capturing free variables of N . We will sometimes use this substitution notation on
subterms when we intend free variables to be captured; we will distinguish this intention by the
proper use of parentheses, e.g. in �x:(N [y:=x]) we intend for the substituted occurrences of x to
be captured by the binding. A context C[�] is a �-term with a hole and if M is a �-term then
C[M] denotes the result of inserting M into the hole in C[�], including the capture of free variables
in M by the bound variables of C[�]. We denote that N is a subterm of M (possibly M itself)
by N � M . We assume at all times that every �-term M obeys the restriction that no variable is
bound more than once and no variable occurs both bound and free in M . K denotes the standard
combinator (�x:�y:x).

The set of all types T is built from the set of type variables V using two type constructors
speci�ed by the grammar T ::= V j (T!T) j (8V:T). We use small Greek letters from the
beginning of the alphabet (e.g. � and �) as metavariables over Vand small Greek letters towards
the end of the alphabet (e.g. � and �) as metavariables over T. When writing types, the arrows
associate to the right so that �!�!� = �!(�!�). We use the same scoping convention for
\8" as we do for \�". FTV(�) and BTV(�) denote the free and bound type variables of type � ,
respectively. We give the notation �[�:=�] the same meaning for types that it has for �-terms. We
write � � � to indicate that � can be instantiated to � , i.e. � = 8~�:� and there exist types ~� such
that �[~�:=~�] = � . �0 denotes that the types ~� in the substitution contain no quanti�ers. We write
? to denote the type 8�:�.

We have several conventions about how quanti�ers in types are treated. �-conversion of types
and reordering of adjacent quanti�ers is allowed at any time. For example, we consider the types
8�:8�:�! �, 8�:8�:� ! �, and 8�:8�:�! � to all be equal. Using �-conversion we assume that
no variable is bound more than once in any type, that the bound type variables of any two type
instances are disjoint, and that all bound type variables of any type instance are disjoint from the
free type variables of another type instance. If � = 8�:� and � =2 FTV(�), we say that \8�" is a
redundant quanti�er. We assume types do not contain redundant quanti�ers.

We de�ne a notation for specifying many quanti�ers concisely. For type � and set of type
variables X � FTV(�), the shorthand notation 8X:� is de�ned so that 8?:� = � and 8(X [
f�g):� = 8�:8(X � f�g):�. This de�nes just one type because we assume the order of quanti�ers
does not distinguish two types. We may use ~� to stand for a sequence of type variables �1, : : : ,
�n. We allow ~� to be treated as a set or as a comma-separated sequence as is most convenient, so
8~�:� has the expected meaning. The notation 8:� means 8(FTV(�)):�.

To de�ne System �k, we will use the following inductive strati�cation of types. First de�ne
R(0) as the set of open types, i.e. types not mentioning 8. Then, for all k � 0, de�ne R(k + 1) by
the grammar R(k + 1) ::= R(k) j (R(k)!R(k + 1)) j (8V: R(k+ 1)). We say that R(k) is the
set of types of rank k. For example, 8�:�!8�:�!� is a type within rank 1 and (8�:�!�)!8�:�
is a type within rank 2 but not within rank 1. Our de�nition of rank is equivalent to the notion of

3

www.manaraa.com

VAR A ` x : � A(x) = �

APP
A `M : �!�; A ` N : �

A ` (M N) : �

ABS
A [fx:�g `M : �

A ` (�x:M) : �!�

INST
A `M : 8�:�

A `M : �[�:=�]

GEN
A `M : �

A `M : 8�:�
� =2 FTV(A)

Figure 1: Inference Rules of System F and �k.

rank introduced in [Lei83]. Since R(k) � R(k+ 1) it follows that if a type � is within rank k, then
it is within every rank n � k. Observe that performing the substitution �[�:=�] may not preserve
rank. The resulting rank depends on the rank of � and how deep in the negative scope of ! the
free occurrences of � in � are.

To de�ne ��2 , we will use subsets of the type sets R(0), R(1), and R(2) called S(0), S(1), and
S(2). Let S(0) = R(0) be the set of all open types. Let S(1) be the set of all types of the form
8~�:�, where � 2 S(0). Let S(2) be the set of all types of the form 8~�:�1!� � �!�m!� , where
�1; : : : ; �m 2 S(1) and � 2 S(0).

An assertion is an expression of the form A `M : � where A is a type assignment (a �nite set
fx1 : �1; : : : ; xn : �ng associating at most one type � with each variable x), M a �-term and � a
type. We say this assertion's type is the type �1!� � �!�n!� and an assertion's rank is the rank
of its type. An assertion A ` M : � is within rank 2 if and only if � is within rank 2 and all the
types assigned by A are within rank 1. A(x) denotes the unique type � such that that (x:�) 2 A.
FTV(A) is the set of all free type variables in all of the types assigned by A. The notation A[~�:=~�]
denotes a new type assignment A0 such that if A(x) = � then B(x) = �[~�:=~�]. We assume that
throughout an assertion it is the case that all bound type variables are named distinctly from each
other and that the bound and free type variables do not overlap (satis�ed by �-conversion).

We de�ne System F to be the type system that can derive types for �-terms using the inference
rules presented in Figure 1 with no other restrictions. For every k � 0, we de�ne �k as the
restriction of F which allows only assertions within rank � k to be derived. We de�ne System
��2 as a restriction of System �2 where the two di�erences are that (i) in ��2 all assertions must

INST�
A `M : 8�:�

A `M : �[�:=�]
� 2 S(0)

Figure 2: INST�: Replacement for INST in ��2 .

4

www.manaraa.com

have types in S(2) (thus all assigned types are in S(1) and all derived types in S(2)) and (ii) that
the inference rule INST of �2 is replaced by the rule INST� described in Figure 2. Theorem 9
in [KT92] shows that ��2 types the same set of terms as �2 with very similar types. Since ��2 is
as powerful as �2 and since its restrictions make analysis of type inference easier, we will use it
instead of �2 in this paper.

If K is a type inference system, then the notation A `K M : � denotes the claim that A `M : �
is derivable in K.

3 System �k Typability Undecidable for k � 3

Section 5 of [KT92] introduces System �k[Ck] for each k � 3 and Theorem 30 of the same pa-
per proves that typability is undecidable for �k[Ck] for k � 3. The original de�nition of �k[Ck]
de�ned it based on �k by adding two constants, c and f , with prede�ned types �c;k and �f;k.
A simple alternate de�nition is to declare that A ` M : � is derivable in �k[Ck] if and only if
A [fc:�c;k; f :�f;kg `M : � is derivable in �k.

The analysis for �3[C3] goes as follows. For �3[C3] the types of the constants c and f are
�c;3 = 8�:�!(((�!�)!�)!�) and �f;3 = 8�:(�!�)!((�!�)!�). We construct a context
C3[�] with one hole:

Ji[�] � (�yi:(�zi:r(yiyi(yizi))))(�xi:Kxi(K(xi(xir))[�]))(�wi:wiwi)

D[�] � (�f:r(x1(fx1x1))(x2(fx2x2))[�])(�u:�v:u(v(u(ur))))

E[�] � (�t:r(x1(tx1(x1r)(fx1)))(x2(tx2(x2r)(fx2)))[�])(�p:�q:�s:K(p(pq))(p(sp)))

G[�] � (�c:r(x1(c(x1r)(fx1)))(x2(c(x2r)(fx2)))[�])(tr)

C3[�] � �r:J1[J2[D[E[G[�]]]]]

Using the methods of [Wel93], it can be seen that this context can be typed in �3 and in any typing
of this context (with any �-term placed in the hole), the variables c and f must be assigned the
types �c;3 and �f;3.

Since for each k > 3 a context Ck[�] having the same properties with respect to �k can be
constructed, we have this result:

Theorem 3.1 For any type assignment A, there exists a type � such that A[fc:�c;k; f :�f;kg �̀3M :
� is derivable if and only if there exists a type � 0 such that A �̀3Ck[M] : � 0 is derivable. Thus, the
problem of typability for �k[Ck] for k � 3 is reducible to the problem for �k. Therefore, typability
is undecidable for �k for every k � 3.

4 System �
�;�
2

In this section, we observe a number of convenient properties of System ��2 . We then de�ne System
��;�2 as a restriction of ��2 that embodies these properties and prove that ��;�2 is equivalent to ��2 .

De�nition 4.1 (act) (Taken from [KT92].) Let us de�ne, by induction on �-terms M , the se-
quence act(M), of active variables in M :

1. act(x) = " (the empty sequence)

2. act(�x:M) = x � act(M)

3. act(MN) =

(
" if act(M) = "
x2 � � �xn if act(M) = x1 � � �xn, for some n � 1

5

www.manaraa.com

Let us observe that due to our conventions, there are no repetitions of variables in act(M).
The sequence act(M) represents outstanding abstractions in M , i.e. those abstractions which have
not been \captured" by an application. For each application subterm Q � RS in a �-term M

where act(R) = x � � � , there is an abstraction subterm N � (�x:P) within R (possibly R itself). In
this case, we say that the subterms N , Q, and S are companions, speci�cally, N is the companion
abstraction, Q the companion application, and S the companion argument of the others. In this
case, if N is ever �-reduced, its argument will be S or S's �-descendent. If N � R, i.e. Q � NS,
then we say that they are adjacent companions and it is the case that they are a �-redex. A
set of non-adjacent companions represents a \potential" �-redex in a �-term whose presence can
be detected by simple inspection without �-reduction. Companions turn out to have convenient
properties in ��2 .

De�nition 4.2 (()�) For a �-term M , we de�ne (M)� as the e�ect of traversing M and labeling
each of its abstraction subterms with an index i 2 f1; 2; 3g, depending on the subterm's position
and whether it has companions. (M)� is de�ned in terms of an auxiliary function label which takes
as parameters a �-term, a set of variables, and an index. The inductive de�nition of label follows
for i 2 f1; 2; 3g:

1. label(x;X; i) = x

2. label((�x:M); X; i) =

(
(�ix: label(M;X; i)) if x 2 X;

(�1x: label(M;X; i)) if x =2 X

3. label((MN);X; i) = (label(M;X; i) � label(N; act(N); 3))

We then �nish the de�nition by saying that (M)� = label(M; act(M); 2).

Informally, labeling the �-term M a�ects each abstraction subterm N as follows. If N has
companions, then it is labelled with �1. If N does not have companions, then it is labelled with �2

if there is no subterm P = LR of M such that N lies within R, the right subterm. Otherwise N is
labelled with �3. When dealing with a labelled �-term M after this point, we will assume that the
labeling is the result of the ()� operator and not any arbitrary labeling, i.e. we assume that either
M = (N)� or M � (N)� for some unlabelled �-term N .

Lemma 4.3 If D is a derivation in ��2 that types the �-term M , and there is an abstraction
subterm (�x:N) in M , and there is a subterm (PQ) in M such that x appears in act(Q), and there
is an assertion A [fx:�g ` N : � in D, then � 2 S(0). Restated more informally, the bound
variable of a companionless, �3-labelled abstraction must be assigned a monomorphic type.

Lemma 4.4 If in ��2 there is a derivation D ending with the assertion A ` M : � , then for
any type variable substitution [~�:=~�], it is the case that there is a derivation D0 ending with the
assertion A[~�:=~�] ` M : � [~�:=~�] and, furthermore, D and D0 are of the same length and there is
a one-to-one correspondence between rule applications in both derivations.

Lemma 4.4 is used by Lemma 4.5. For Lemma 4.5, let us temporarily suppose that quanti�ers
introduced into types by the GEN rule are marked. For example, from the assertion A ` M : �
where � =2 FTV(A) we can derive using GEN the assertion A ` M : 8 [�:� . These markers on
quanti�ers do not a�ect the behavior of the inference rules; they merely allow us to precisely
phrase the lemma.

Lemma 4.5 If in ��2 there is a derivation D ending with the assertion A ` M : � , then there is
a derivation D0 ending with the same assertion such that there is no use of the INST rule whose
premise is an assertion of the form B ` N : 8 [�:�. In plainer English, we can assume that
quanti�ers introduced by GEN are never instantiated.

6

www.manaraa.com

VAR � A ` x : 8~�:� A(x) �0 �; � 2 S(0); ~� =2 FTV(A)

APP�
A `M : �!�; A ` N : �

A ` (M N) : 8~�:�
�; � 2 S(0); act(M) = "; ~� =2 FTV(A)

APP�;+ A `M : �!�; A ` N : �

A ` (M N) : 8~�:�
� 2 S(0); act(M) 6= "; ~� =2 FTV(A)

ABS �;1;2 A [fx:�g `M : �

A ` (�ix:M) : 8~�:�!�
� 2 S(0); i 2 f1; 2g; ~� =2 FTV(A)

ABS �;3 A [fx:�g `M : �

A ` (�3x:M) : 8~�:�!�
�; � 2 S(0); ~� =2 FTV(A)

Figure 3: Inference Rules of System ��;�2 .

Lemma 4.6 If D is a derivation in ��2 that types the �-term M , and D includes the assertion
A ` N : 8�:� , and there are no subsequent assertions in D for the subterm N that are derived from
this assertion, then either N = M or there is a subterm (PN) in M where act(P) 6= ". Rephrased,
the only proper subterms for which the �nal derived type may be a 8-type are companion arguments.

Lemma 4.7 results from Lemmas 4.5 and 4.6.

Lemma 4.7 If D is a derivation in ��2 that types the �-term M , and D includes the assertion
A ` N : 8�:� as a consequence of the GEN rule, then N is a companion argument.

Lemma 4.8 If in ��2 there is a derivation D ending with the assertion A ` M : � , then there is
a derivation D0 ending with the same assertion such that if the assertion B ` N : � in D0 is the
consequence of the INST rule, then N 2 V, i.e. N is a variable. In other words, we can assume all
uses of the INST rule occur at the leaves of the derivation (viewing the derivation as a tree).

We now de�ne the new System ��;�2 to formally include the restrictions proven by the previous
lemmas into a type system. We present the inference rules for ��;�2 in Figure 3. As in ��2 , all
assertions are required to be within rank 2.

Theorem 4.9 A (̀��2)M : � holds if and only if A (̀��;�2)(M)� : � holds, i.e. every ��2 typing is

equivalent to a ��;�2 typing and vice versa.

5 �-Reduction and System �
�;�;�
2

In this section, we de�ne a new notion of reduction and then use it to reduce System ��;�2 typability
to an even more restricted type discipline, System ��;�;�2 .

De�nition 5.1 (�) We de�ne 4 notions of reduction denoted �1, �2, �3, and �4 which will transform
a labelled �-term (M)� in a useful way. These transformations are de�ned as follows:

� �1 transforms a subterm of the form (((�1x:N)P)Q) to ((�1x:NQ)P).

7

www.manaraa.com

� �2 transforms a subterm (�3x:(�1y:N)P) to ((�1v:�3x:(N [y:=vx]))(�3w:(P [x:=w]))), where
v and w are fresh variables.

� �3 transforms a subterm of the form (N((�1x:P)Q)) to ((�1x:NP)Q).

� �4 transforms a subterm of the form ((�1x:(�2y:N))P) to (�2y:((�1x:N)P)).

Capture of free variables in �1, �3, and �4 does not occur due to our assumption that all bound
variables are named distinctly from all free variables. �1, �3, and �4 a�ect subterms that are
applications, while �2 is applied to subterms that are abstractions. When �-terms are viewed as
trees, �1, �2, and �3 can be seen to have the e�ect of hoisting �-redexes higher in the transformed
term, while �4 has the e�ect of raising an abstraction above a �-redex. In section 6, we will
use properties of these transformations to prove that a typability problem is reducible to acyclic
semi-uni�cation.

We use the notation �i where i 2 f1; 2; 3; 4g to stand for one of �1, �2, �3, or �4. We de�ne �i;j
to be �i [�j and de�ne � = �1;2;3;4. Since these transformations are all notions of reduction, !�1 ,
!�1;2 , !�, etc., have the expected meaning.

We say that a term is in �-normal form if it has no �-redexes. A �-normal form of M is a
�-term N in �-normal form such that M !!� N . A �-term may have more than one �-normal
form, e.g. the �-term (((�x:M)N)((�y:P)Q)) has two �-normal forms, ((�x:(�y:MP)Q)N) and
((�y:(�x:MP)N)Q).

We now prove a variety of useful properties of �-reduction.

Lemma 5.2 Let M be in �-normal form. M is of the form:

�2x1:�
2x2: : : :�

2xm:(�
1y1:(�

1y2:(: : :((�
1yn:Tn+1)Tn) : : :))T2)T1

where m � 0, n � 0, and where T1, : : : , Tn+1 are �-terms in �-normal form. Furthermore, any
abtractions within Ti for 1 � i � n + 1 are �3-labelled. Thus, all �1-labelled abstractions belong to
�-redexes, i.e. there are no non-adjacent companions.

The �-term M detailed in Lemma 5.2 can also be viewed as the following ML term:

fn x1) fn x2) : : :) fn xm) let y1 = T1 in let y2 = T2 in : : : let yn = Tn in S

Lemma 5.3 �1, �2, �3, and �4 always transform a �-term M into a �-equivalent �-term N , i.e. if
M !� N , then M =� N .

Lemma 5.4 �-reduction always terminates, i.e. it is strongly normalizing.

Lemma 5.5 We can assume that the type assigned to the bound variable of a �1-abstraction which
is the function of a �-redex has no free type variables that are not also free somewhere else in the
type assignment.

Lemma 5.5 is used by Lemma 5.6.

Lemma 5.6 If �1, �2, �3, or �4 transform M into N in one step, then with any particular type
assignment, both M and N are typable with the same types in ��;�2 . In other words, if M !� N ,
then in ��;�2 it holds that A `M : � is derivable if and only if A ` N : � is derivable. As a result,
A (̀��;�2)M : � is true if and only if A (̀��;�2)�-nf (M) : � is true.

Lemma 5.7 act(�-nf ((M)�)) = act(M).

8

www.manaraa.com

VAR � A ` x : � A(x) �0 �; � 2 S(0)

APP � A `M : �!�; A ` N : �

A ` (M N) : �
�; � 2 S(0); act(M) = "

LET �
A [fx:8:�g `M : �; A ` N : �

A ` ((�1x:M)N) : �
�; � 2 S(0)

ABS �;1 A [fx:8:�g `M : �

A ` (�1x:M) : (8:�)!�
� 2 S(0)

ABS �;2 A [fx:?g `M : �

A ` (�2x:M) : ?!�

ABS �;3
A [fx:�g `M : �

A ` (�3x:M) : �!�
�; � 2 S(0)

Figure 4: Inference Rules of System ��;�;�2 .

Lemma 5.8 (From [KT92].) In ��;�2 , if A ` M : � is derivable and jact(M)j = n, then � =
8~�:�1! : : :!�n!� and ~� 2 S(1) and � 2 S(0).

Lemma 5.9 We can always assign the type ? = 8�:� to the bound variable of a companionless,
�2-labelled abstraction without a�ecting the whole �-term's typability.

Lemma 5.10 Under the restriction that the outermost type assignment assigns the type ? to all
variables, we can always assign universally closed types to the bound variables of every �1-labelled
abstraction without a�ecting the whole �-term's typability.

We now de�ne System ��;�;�2 to take advantage of the typing properties of �-terms in �-normal
form in ��;�2 . System ��;�;�2 is intended to be used only for �-normal forms; its behavior on other
�-terms has not been investigated. The inference rules for ��;�;�2 are presented in Figure 4. As with
��;�2 , assigned types must be in S(1) and derived types must be in S(2).

Theorem 5.11 Typability and type inference in ��;�2 are reducible to the same problems in ��;�;�2 .
For a labelled �-term M where jact(M)j = n, if A (̀��;�2)M : 8~�:�1!� � �!�n!� holds, then using

the type assignment B that maps all variables to type ? it is the case that B (̀�
�;�;�

2)�-nf (M) :

?! � � �!?!� holds as well. If C (̀��;�;�2)�-nf (M) : � holds, then C (̀��;�2)M : � must hold as well.

6 System �
�;�;�
2 Type Inference Reducible to ASUP

In this section we de�ne the problem of acyclic semi-uni�cation, give an algorithm for solving
it, and develop a construction for reducing the problem of typability in System ��;�;�2 to acyclic
semi-uni�cation.

For convenience, we de�ne semi-uni�cation using the set of open types R(0) as the set of
algebraic terms T . Let X = Vdenote the set of term variables to emphasize their use in algebraic
terms as opposed to types. Although the members of T are also types, we will refer to them as

9

www.manaraa.com

terms when using them in semi-uni�cation. A substitution is a function S : X ! T that di�ers
from the identity on only �nitely many variables. Every substitution extends in a natural way to
a !-homomorphism S : T ! T so that S(�!�) = S(�)!S(�). An instance � of semi-uni�cation
is a �nite set of pairs (called inequalities) in T � T . Each such pair is written as � � � where
�; � 2 T . A substitution S is a solution of instance � = f�1 � �1; : : : ; �n � �ng if and only if there
exist substitutions R1; : : : ; Rn such that:

R1(S(�1)) = S(�1) ; : : : ; Rn(S(�n)) = S(�n)

For an arbitrary term � , we de�ne the left and right subterms of � , denoted L(�) and R(�). More
precisely, if � is a variable then L(�) and R(�) are unde�ned, otherwise we set L(�1!�2) = �1 and
R(�1!�2) = �2. If � 2 fL;Rg�, say � = x1x2 � � �xp, the notation �(�) means x1(x2(� � �(xp(�) � � �)).
For an arbitrary � 2 fL;Rg�, the subterm �(�) is de�ned provided � (read from right to left) is
a path (from the root to an internal node or to a leaf node) in the binary tree representation of � .

An instance � of semi-uni�cation is acyclic if it can be organized as follows. There are n + 1
disjoint sets of variables, V0, : : : , Vn, for some n � 1, such that the inequalities of � can be placed
into n columns:

�1;1 � �1;1 �2;1 � �2;1 � � � � � � �n;1 � �n;1

�1;2 � �1;2 �2;2 � �2;2 � � � � � � �n;2 � �n;2

...
...

...

�1;r1 � �1;r1 �2;r2 � �2;r2 � � � � � � �n;rn � �n;rn

where:

V0 = FV (�1;1) [� � � [FV (�1;r1)

V1 = FV (�1;1) [� � � [FV (�1;r1) [FV (�2;1) [� � � [FV (�2;r2)

...

Vn�1 = FV (�n�1;1) [� � � [FV (�n�1;rn�1) [FV (�n;1) [� � � [FV (�n;rn)

Vn = FV (�n;1) [� � � [FV (�n;rn)

The acyclic semi-uni�cation problem (henceforth abbreviated ASUP) is the problem of deciding,
for an ASUP instance �, whether � has a solution.

We now de�ne a procedure which constructs a solution for ASUP instance � if � has a solution
and otherwise answers that there is no solution. This procedure is a modi�cation of the procedure
de�ned in [KTU93] which consists of repeatedly reducing redexes, which can be of two kinds, and it
halts when there are no more redexes or when a conict is detected that precludes a solution. Each
reduction substitutes a term for a variable throughout � and the composition of the reductions
done so far represents the construction of the solution.

� (Redex I reduction) Let � 2 X and let � 0 62 X be a term with the property that there is a
path � 2 fL;Rg� and � � � is an inequality of � such that:

�(�) = � 0 and �(�) = �

The pair of terms (�; T (� 0)) where T is a one-to-one substitution that maps all variables in
� 0 to fresh names is called a redex I. Reducing this redex substitutes T (� 0) for all occurrences
of � throughout �.

10

www.manaraa.com

� (Redex II reduction) Let � 2 X and �0 2 T have the property that � 6= �0 and there are paths
�;�;� 2 fL;Rg� and � � � is an inequality in � such that:

�(�) = �(�) 2 X and ��(�) = � and ��(�) = �0

Such a pair (�; �0) is called a redex II. Reducing this redex consists of substituting �0 for all
occurrences of � throughout �. However, if there is a path � 2 fL;Rg� such that �(�0) = �,
then no solution to � is possible, so the procedure halts and outputs the answer that there is
no solution if this is detected.

Although the general case of semi-uni�cation was proven to be undecidable in [KTU93], we
have the following result for ASUP:

Lemma 6.1 For an instance � of ASUP, the redex procedure either constructs a solution S to �
and halts or correctly answers that � has no solution and halts.

To solve the typability and type inference problems for ��;�;�2 for �-terms in �-normal form, we
construct an ASUP instance �. Consider the labelled �-term M in �-normal form:

M � �2x1:�
2x2: : : :�

2xm:(�
1y1:(�

1y2:(: : :((�
1yn:Tn+1)Tn) : : :))T2)T1

We will adopt the convention that the abstractions in the component Ti bind variables named zi;1,
zi;2, etc. By writing the inequality (� �i �), we assert that the inequality will belong to column i

of �. Most of the inequalities will be of a certain special form, so (�
:
=i �) denotes the inequality

(�!� �i �!�) where � is a fresh variable mentioned in no other term in �. This will have the
e�ect of unifying � and � as in ordinary �rst-order uni�cation. We will assume that the subterms
of M are indexed so that two otherwise identical subterms in di�erent positions within M will be
considered distinct in what follows.

We construct � as follows. In constructing the instance � of ASUP, each subterm N � Ti will
contribute one inequality, each �-redex ((�1yi:Pi)Ti) will contribute one inequality, and for each
variable yi there will be 1 + n � i inequalities. For each subterm N of Ti, the term variable �N
will represent the derived type of N . For each bound variable zi;j (which must be monomorphic),
the term variable i;j will represent its assigned type. For each bound variable yi (which must
be universally polymorphic), the term variables �i;i, : : : , �n;i will represent its assigned type. For
each occurrence of xj (which will be assigned the type ?), there will be no particular variable to
represent its type, since it is unconstrained.

Now we de�ne the inequalities that will be in �. For each subterm N of Ti, we add an inequality
to � that will depend on N :

1. For N � xj , we do not add any inequality.

2. For N � yj , we add (�i�1;j �i �N).

3. For N � zi;j , we add (i;j
:
=i �N).

4. For N � (PQ), we add (�P
:
=i �Q!�N).

5. For N � (�3zi;j:P), we add (i;j!�P
:
=i �N).

For each �-redex ((�1yi:Pi)Ti), we add the inequality (�i;i
:
=i �Ti). Finally, for each bound variable

yj and for each i 2 fj + 1; : : : ; n+ 1g, we add the inequality (�i�1;j � �i;j).

Theorem 6.2 The ASUP instance � has a solution S if and only if the �-term M in �-normal
form is typable in ��;�;�2 . Furthermore, if M is typable in ��;�;�2 , the type ?! � � �!?!(S(�Tn+1))
where the number of \?" components of the type is m (the number of variables in the sequence x1,
: : : , xm, also the value of jact(M)j) is a type derivable for M in ��;�;�2 .

11

www.manaraa.com

We can �nally descripe our type inference algorithm for System �2. If M is typable in �2, then
the following procedure will produce a type for it and will otherwise answer that M is not typable:

1. Compute the labelled M1 = (M)�.

2. Compute the �-term M2 = �-nf(M1) using �-reduction.

3. Compute the ASUP instance �.

4. Run the redex procedure on � to either produce a solution S for � or the answer that � has
no solution. In the latter case, halt with the answer that M is not typable in �2.

5. Compute and output the type ?! � � �!?!(S(�Tn+1)) where the number of \?" components
is jact(M)j.

It was shown in [KT92] that �2 typability is DEXPTIME-complete (where DEXPTIME means
DTIME(2n

O(1)

)). We have just developed an algorithm that reduces �2 type inference to ASUP
in polynomial-time. ASUP was shown to be DEXPTIME-complete in [KTU90]. Therefore, our
algorithm is optimal.

References

Relevant documents not cited in the main text are [KMM90, Tiu90, Hen88].

[Dow93] G. Dowek. The undecidability of typability in the ��-calculus. In TLCA [TLCA93],
pp. 139{145.

[Gir72] J.-Y. Girard. Interpr�etation Fonctionelle et Elimination des Coupures de l'Arithm�etique
d'Ordre Sup�erieure. Th�ese de Doctorat d'Etat, Universit�e Paris VII, 1972.

[GMW79] M. J. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF, vol. 78 of LNCS.
Springer-Verlag, 1979.

[GRDR91] P. Giannini and S. Ronchi Della Rocca. Type inference in polymorphic type discipline.
In Theoretical Aspects Comput. Softw. : Int'l Conf., vol. 526 of LNCS, pp. 18{37.
Springer-Verlag, Sept. 24{27, 1991.

[Hen88] F. Henglein. Type inference and semi-uni�cation. In Proc. 1988 ACM Conf. LISP
Funct. Program., Snowbird, Utah, U.S.A., July 25{27, 1988. ACM.

[KMM90] P. Kanellakis, H. Mairson, and J. C. Mitchell. Uni�cation and ML type reconstruction.
In Computational Logic: Essays in Honor of Alan Robinson. MIT Press, 1990.

[KT92] A. J. Kfoury and J. Tiuryn. Type reconstruction in �nite-rank fragments of the second-
order �-calculus. Inf. Comput., 98(2):228{257, June 1992.

[KTU90] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis of ML typability. In 15th Colloq.
Trees Algebra Program., vol. 431 of LNCS, pp. 206{220. Springer-Verlag, 1990.

[KTU93] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. The undecidability of the semi-uni�cation
problem. Inf. Comput., 102(1):83{101, Jan. 1993.

[Lei83] D. Leivant. Polymorphic type inference. In Conf. Rec. 10th Ann. ACM Symp. Princ.
Program. Lang., pp. 88{98. ACM, 1983.

[Lei91] D. Leivant. Finitely strati�ed polymorphism. Inf. Comput., 93(1):93{113, July 1991.

[McC84] N. McCracken. The typechecking of programs with implicit type structure. In Semantics
of Data Types : Int'l Symp., vol. 173 of LNCS, pp. 301{315. Springer-Verlag, 1984.

12

www.manaraa.com

[Mil85] R. Milner. The standard ML core language. Polymorphism, 2(2), Oct. 1985.

[Pie92] B. Pierce. Bounded quanti�cation is undecidable. In Conf. Rec. 19th Ann. ACM Symp.
Princ. Program. Lang., pp. 305{315. ACM, 1992.

[Rey74] J. C. Reynolds. Towards a theory of type structures. In [Proc. 1st Int'l] Symp. Pro-
gramming, vol. 19 of LNCS, pp. 408{425. Springer-Verlag, 1974.

[Tiu90] J. Tiuryn. Type inference problems: a survey. In Proc. Int'l Symp. Math. Found.
Comput. Sci., vol. 452 of LNCS, pp. 105{120. Springer-Verlag, 1990.

[TLCA93] Int'l Conf. Typed Lambda Calculi and Applications, vol. 664 of LNCS, Utrecht, The
Netherlands, Mar. 1993. Springer-Verlag.

[Tur85] D. A. Turner. Miranda: A non-strict functional language with polymorphic types. In
IFIP Int'l Conf. Funct. Program. Comput. Arch., vol. 201 of LNCS. Springer-Verlag,
1985.

[Urz93] P. Urzyczyn. Type reconstruction in F
!
is undecidable. In TLCA [TLCA93], pp.

418{432.

[Wel93] J. B. Wells. Typability and type checking in the second-order lambda-calculus are
equivalent and undecidable. Tech. Rep. 93-011, Comput. Sci. Dept., Boston Univ.,
1993.

13

